
Informative Dropout and Visual 
Predictive Check of Exposure-Response 
Modeling of Ordered Categorical Data

Chuanpu Hu, PhD

Director, Pharmacometrics

Chuanpu Hu, PhDChuanpu Hu, PhD

Director, Pharmacometrics

Biologics Clinical Pharmacology

Centocor Research & Development, Inc. 

PAGE 2011



• Recently appeared in J/PK/PD (2011) 38: 237-290

– Dropout classification, informative dropout modeling

– Conditional visual predictive check (VPC)

• Statistically appropriate

• Independent on correlated factors, e.g., future dosing

• Same principle applies to checking dropout model

– Semi-mechanistic PK/PD driven logistic regression model

Overview
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– Semi-mechanistic PK/PD driven logistic regression model

• Investigation of tolerance

– Model validation

• Using data from separate study is practically the only valid approach

• Avoid subjective motivations to bias the results toward calling model 
“validated,” e.g., using posthoc estimates, which may mean using 
validation data twice

• VPC likely the best tool, at least for longitudinal data



Informative Dropout Illustration
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• Notation

– T: dropout time

– Yobs = (Y1,Y2,…,Yi ): observed response for a subject

– Ymis = Y(t): unobserved true response during time interval (ti,T)

• Completely random dropout (CRD), if 

– T is independent of (Yobs, Ymis)

Dropout Classification and Modeling
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• Can ignore dropout

• Random dropout (RD), if

– T depends on Yobs, but not Ymis

• Can ignore dropout in modeling

• Informative dropout (ID), if

– T depends on Ymis

• Must model dropout jointly with response



• Jointly model response data and dropout – 2 ways to 
factorize (specify) likelihood

– P(Yobs, T | ϕ, θ) = P(Yobs| θ) * P(T | Yobs, Ymis, ϕ)
• (Selection model) Specify response model, and how dropout depends 
on response 

– Good for PK/PD modeling

Informative Dropout Modeling
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– Good for PK/PD modeling

– P(Yobs, T | ϕ, θ) = P(T | ϕ) * P(Yobs| θ, T) 
• (Pattern mixture) Specify dropout model, and how response depends 
on dropout

– Motivation for conditional VPC

• Directly implementable in NONMEM



• Simulate joint distribution P(Y, T) of longitudinal data AND 
dropout, then ignore dropout

– Observed data to be compared with is actually (Y|T), longitudinal 
data given dropout

– Fine if Y, T are independent, but not under informative dropout

Ordinary VPC of Longitudinal Data
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• Additional problem: simulated dropout for a subject may 
occur after actual dropout

– Requires the assumption that future dosing is known with 
certainty

• Problem with most clinical trial conduct, especially if titration is 
present

• Additional uncertainty and potential bias



• Statistically appropriate approach: generate P(Y | T), the 
distribution of longitudinal data conditional on (observed) 
dropout

• Repeated simulation of each subject until simulated dropout 
falls in observed dropout time interval

Conditional VPC of Longitudinal Data
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Simulate subject 
(ETA)

Simulate dropout

Simulated dropout is 
in observed interval?

Accept subjectNo



• Conditional approach more appropriate, similar to checking 
longitudinal data

• Conditioning on longitudinal instead of dropout

– Calculate posthoc ETAs from longitudinal data, then put in 
individual dropout model

Checking Dropout Model

Chuanpu Hu, PhDChuanpu Hu, PhD

• Calculation would be more accurate if also using dropout,  however 
would amount to using dropout data twice

• Model checking/validation: use modified Cox-Snell residual 
(straight line if good fits)



Application: Study Design and Data

PGA: 6-point measure of disease severity

• 0=cleared; 1=minimal, … 5=severe

• PGA≤1 and 2 used for regulatory purposes

Study PHOENIX 2 (used for initial model development) 

• Week 0 – 12: PBO / 45mg / 90mg / Loading + Q12 weeks 

• Week 12 – 28: PBO crossover
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• Week 12 – 28: PBO crossover

• Week 28 – 52: Dose optimization (escalation)

• Week 52 – : long term extension (open label)

• 1,312 subjects, 9,723 PK records, 21,711 PGA scores, 17% dropout

Study PHOENIX 1 (reserved for model validation)

• Similar design but some data up to week 152

• 665 subjects, 9,617 PK records, 19,957 PGA scores, 21% dropout



Checking Whether Complete Random 
Dropout Is Reasonable
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PK/PD Model Overview

Ustekinumab Dose Serum Conc.
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Disease Progression Placebo Effect

Disease Status

PGA Score

Logistic Regression



• With logit(x) = log[ x / (1-x) ], model

– Logit[prob(PGA ≤ k)] = αk + fz(t) + fp(t) + fd(t) + η

• Baseline probability: αk

• Disease progression fz(t) = βt

• Placebo effect: fp(t) = Plbmax[1 – exp(-Rpt)]

Latent Variable Indirect PK/PD Model
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• Drug effect: fd(t) = DE[1 – R(t)]

• (Precursor model was not significant after incorporating disease progression)
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(Joint) Dropout Model with Weibull Hazard

Completely random (CRD) 

•h(t) = aλta-1

• Independent of observed or unobserved longitudinal data

Random (RD) 

•h(t) = aλta-1 exp(-βOYO) 
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•h(t) = aλta-1 exp(-βOYO) 
•Depend on past observed data YO but not on unobserved data

Restrict Informative (RID) 

•h(t) = aλta-1 exp(-β1YU) 
•Depend on unobserved disease status YU= fz(t)+fp(t)+fd(t)+η

Categorical data less informative; RID likely will fit better than RD
Can graphically assess whether CRD is realistic, but not RD or RID



Initial model using Phoenix 2

•CRD, RD, ID and RID, combined with constant and Weibull hazards

•RID with Weibull dropout fits best

(External) validation using Phoenix 1

Modeling Scheme

Chuanpu Hu, PhDChuanpu Hu, PhD

Refit the model combining Phoenix 1 and 2

•Conditional VPC for response and dropout

Conditional approach used for VPC and dropout in all 3 stages



Initial Model Conditional VPC
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Validation Using Phoenix 2 – Conditional 
VPC
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Final Model with Combined Data
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Informative dropout modeling extends 
straightly to categorical data 

• Weibull dropout model can account for time-vary 
hazards

• RID likely to fit better

Conclusion
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• RID likely to fit better

Use conditional approach for model checking 
(VPC)

• Statistically appropriate

• Independent of unknown future dosing: less 
uncertainty, more accurate


