Informative Dropout and Visual Predictive Check of Exposure-Response Modeling of Ordered Categorical Data

Chuanpu Hu, PhD

Director, Pharmacometrics

Biologics Clinical Pharmacology

Centocor Research & Development, Inc.

PAGE 2011

Overview

- Recently appeared in J/PK/PD (2011) 38: 237-290
 - Dropout classification, informative dropout modeling
 - Conditional visual predictive check (VPC)
 - Statistically appropriate
 - Independent on correlated factors, e.g., future dosing
 - Same principle applies to checking dropout model
 - Semi-mechanistic PK/PD driven logistic regression model
 - Investigation of tolerance
 - Model validation
 - Using data from separate study is practically the only valid approach
 - Avoid subjective motivations to bias the results toward calling model "validated," e.g., using posthoc estimates, which may mean using validation data twice
 - VPC likely the best tool, at least for longitudinal data

Informative Dropout Illustration

PHARMACEUTICAL COMPANIES OF Johnson Johnson

Dropout Classification and Modeling

- Notation
 - T: dropout time
 - Yobs = (Y1,Y2,...,Yi): observed response for a subject
 - Ymis = Y(t): unobserved true response during time interval (ti,T)
- Completely random dropout (CRD), if
 - T is independent of (Yobs, Ymis)
 - Can ignore dropout
- Random dropout (RD), if
 - T depends on Yobs, but not Ymis
 - Can ignore dropout in modeling
- Informative dropout (ID), if
 - T depends on Ymis
 - Must model dropout jointly with response

Informative Dropout Modeling

- Jointly model response data and dropout 2 ways to factorize (specify) likelihood
 - P(Yobs, T | ϕ , θ) = P(Yobs| θ) * P(T | Yobs, Ymis, ϕ)
 - (Selection model) Specify response model, and how dropout depends on response
 - Good for PK/PD modeling
 - P(Yobs, T | ϕ , θ) = P(T | ϕ) * P(Yobs| θ , T)
 - (Pattern mixture) Specify dropout model, and how response depends on dropout
 - Motivation for conditional VPC
- Directly implementable in NONMEM

Ordinary VPC of Longitudinal Data

- Simulate joint distribution P(Y, T) of longitudinal data AND dropout, then ignore dropout
 - Observed data to be compared with is actually (Y|T), longitudinal data given dropout
 - Fine if Y, T are independent, but not under informative dropout
- Additional problem: simulated dropout for a subject may occur after actual dropout
 - Requires the assumption that future dosing is known with certainty
 - Problem with most clinical trial conduct, especially if titration is present
 - Additional uncertainty and potential bias

Conditional VPC of Longitudinal Data

- Statistically appropriate approach: generate P(Y | T), the distribution of longitudinal data conditional on (observed) dropout
- Repeated simulation of each subject until simulated dropout falls in observed dropout time interval

Checking Dropout Model

- Conditional approach more appropriate, similar to checking longitudinal data
- Conditioning on longitudinal instead of dropout
 - Calculate posthoc ETAs from longitudinal data, then put in individual dropout model
 - Calculation would be more accurate if also using dropout, however would amount to using dropout data twice
- Model checking/validation: use modified Cox-Snell residual (straight line if good fits)

Application: Study Design and Data

PGA: 6-point measure of disease severity

- 0=cleared; 1=minimal, ... 5=severe
- PGA≤1 and 2 used for regulatory purposes

Study PHOENIX 2 (used for initial model development)

- Week 0 12: PBO / 45mg / 90mg / Loading + Q12 weeks
- Week 12 28: PBO crossover
- Week 28 52: Dose optimization (escalation)
- Week 52 : long term extension (open label)
- 1,312 subjects, 9,723 PK records, 21,711 PGA scores, 17% dropout

Study PHOENIX 1 (reserved for model validation)

- Similar design but some data up to week 152
- 665 subjects, 9,617 PK records, 19,957 PGA scores, 21% dropout

Checking Whether Complete Random Dropout Is Reasonable

PK/PD Model Overview

PHARMACEUTICAL COMPANIES OF Johnson+Johnson

Latent Variable Indirect PK/PD Model

- With logit(x) = log[x / (1-x)], model
 - Logit[prob(PGA \leq k)] = a_k + f_z(t) + f_p(t) + f_d(t) + \eta
- Baseline probability: a_k
- Disease progression $f_z(t) = \beta t$
- Placebo effect: $f_p(t) = Plb_{max}[1 exp(-R_pt)]$
- Drug effect: $f_d(t) = DE[1 R(t)]$

$$\frac{\mathrm{d}\,\mathbf{R}(t)}{\mathrm{d}t} = k_{\mathrm{in}} \left(1 - \frac{\mathbf{C}_{\mathrm{p}}}{IC_{50} + \mathbf{C}_{\mathrm{p}}}\right) - k_{\mathrm{out}} \,\mathbf{R}(t)$$

• (Precursor model was not significant after incorporating disease progression)

(Joint) Dropout Model with Weibull Hazard

Completely random (CRD)

• $h(t) = a\lambda t^{a-1}$

• Independent of observed or unobserved longitudinal data

Random (RD)

• $h(t) = a\lambda t^{a-1} \exp(-\beta_0 Y_0)$

 \bullet Depend on past observed data $Y_{\rm O}$ but not on unobserved data

Restrict Informative (RID)

• $h(t) = a\lambda t^{a-1} \exp(-\beta_1 Y_U)$

• Depend on unobserved disease status $Y_U = f_z(t) + f_p(t) + f_d(t) + \eta$

Categorical data less informative; RID likely will fit better than RD Can graphically assess whether CRD is realistic, but not RD or RID

Modeling Scheme

Initial model using Phoenix 2

• CRD, RD, ID and RID, combined with constant and Weibull hazards • RID with Weibull dropout fits best

(External) validation using Phoenix 1

Refit the model combining Phoenix 1 and 2 • Conditional VPC for response and dropout

Conditional approach used for VPC and dropout in all 3 stages

PHARMACEUTICAL COMPANIES

Initial Model Conditional VPC

Validation Using Phoenix 2 – Conditional VPC

Final Model with Combined Data

Conclusion

Informative dropout modeling extends straightly to categorical data

- Weibull dropout model can account for time-vary hazards
- RID likely to fit better

Use conditional approach for model checking (VPC)

- Statistically appropriate
- Independent of unknown future dosing: less uncertainty, more accurate

